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Nonlinear Time-Domain Modeling by
Multiresolution Time Domain (MRTD)
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Abstract—A multiresolution time-domain (MRTD) scheme unknown fields. In general, the method of moments allows for
based on the expansion in scaling functions is applied to the the use of any complete set of orthonormal basis functions.
modeling of nonlinear pulse propagation. Appropriate absorbers |, [3], [4], cubic spline Battle—Lemarie scaling and wavelet
for the MRTD scheme are presented and their performance is functions [11], [12] have been used as expansion functions in
discussed. The differences using pulse functions and nonlocalized - 14 ) ;
basis functions like the Battle—Lemarie scaling functions are Space domain. Since the use of scaling and wavelet functions
demonstrated by deriving time-domain schemes for both sets as a complete set of basis functions is called multiresolution
of orthonormal basis functions. analysis [13], [14], the resulting time-domain schemes have

Index Terms_Non"near, time domain, wavelets. been called MRTD schemes. Throughout this paper, the elec-

tromagnetic fields are represented by an expansion in terms of
scaling functions only, thus the resulting scheme is denoted
. INTRODUCTION by a S-MRTD scheme. In order to obtain a two-step S-MRTD
AVELET functions and the related concept of mulscheme with respect to time, pulse functions are used as
tiresolution analysis has become a matter of fastxpansion and test functions in time domain.
growing interest in electromagnetic society. The application While the use of localized basis functions like pulse func-
of wavelet expansions to the solution of integral equatioi®ns allows for a localized modeling of material properties,
leads to very sparse moment matrices and to advantagfes application of nonlocalized basis functions like the Bat-
over conventional basis functions [1], [2]. Recently, it hade—Lemarie scaling functions requires a nonlocalized model-
been shown that these advantages are also present wihgnof material discontinuities. To illustrate the differences in
applying wavelet expansions to the solution of differentidhe two approaches, it is at first demonstrated how to dis-
equations. In particular, the application of multiresolutionretize the nonlinear partial differential equations using pulse
analysis directly to Maxwell's equations has lead to newunctions. This approach leads to a FDTD scheme modeling
multiresolution time-domain (MRTD) schemes with highlythe pulse compression in a nonlinear distributed optical fiber
linear dispersion characteristics [3], [4]. The unparallelefiiter. In the second part of the paper, the nonlinear partial
inherent properties of the MRTD schemes provide advantagéferential equations are discretized using Battle—Lemarie
over the finite-difference time-domain (FDTD) scheme of [5§caling functions instead of pulse functions. Two absorbers,
with respect to memory requirements and execution time. Thbsorbing boundary conditions (ABC's) based on the one-
purpose of this paper is to demonstrate that these advantagag wave equation [15] and the perfectly-matched layer
also do exist in the case of modeling nonlinear materials. WhileML) technique [16] are presented and their performance is
the physics of the nonlinear pulse propagation is describdidcussed for both FDTD and MRTD.
in detail in [6], this paper concentrates on the computational
aspects of solving the nonlinear partial differential equations.

The method of moments [7] has proven to be a powerful I
approach not only for the numerical analysis of integral
equations, but also for the discretization of partial differential
equations. In particular, the application of the method . The Derivation of the FDTD Scheme

moments for the discretization of Maxwell's equations has 1ne physical system modeled in this paper is a spatially

lead to the field theoretical foundation of the transmission ”rﬁ‘eriodic dielectric medium whose refractive index depends
method (TLM) method [8], [9]. In addition, it has been showly, the intensity of an incident electromagnetic pulse. The
in [8], [10] that Yee's FDTD scheme can be derived using thefractive index can be written as

same approach with pulse functions for the expansion of the

. NONLINEAR FDTD MODELING

_ _ _ _ n(z) = ng +n1 cos (262) + na| E|2. 1)
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backward propagating waves functions. For the sampling of the linear terms with respect to
space and time, the orthogonality relation is needed
E =FEp(z, t) exp [)(Bz — wt)] too
+ Ep(z, t) exp[—3(Bz + wt)] (2 /_Oo (2 (2) dz = B, o B2 ®

] ) whereé,, .~ represents the Kronecker symbol
where 3 is the wavenumber of the field envelopé&s- and ’

Eg, which are slowly varying functions of space and time. P { L, for m = m'_ (9)
The periodic spatial modulation of the refractive index leads e 0, for m # m/

to coupling between forward and backward waves, the strengiBing

of which coupling is described by the constant mny /A,

o0
where Ay = 2mno/f. By using (1) and (2) in Maxwell’'s / 8(z — 20) f(z)dz = f(z0) (10)
equations and making use of the slowly varying envelope —oo
approximation following equations foE'r and Eg may be and
obtained:
oMz) _ 6<z + 1) - 6<z _ 1) (11)
az 2 2
8EF no 8EF _2,A8z
— —— =grEge ield
dz c Ot yielas
+n(Erl* +2Es)Er  (3) oo O (2) 1
m\~ 2= = (6m m — Ome1,m). (12
aEB @ aEB :—inEFCQ‘]A’BZ /—oo h (7) az d7 2( +1, 1, ) ( )

0z ¢ ot The later integral is needed for the sampling of the derivatives

with pulse functions in both space and time domains.

) ) o _ The nonlinear terms are discretized in a consistent manner,
The terms on the right-hand side (RHS) cubic in fields descriigich indicates the need to calculate the integrals
self-phase modulation, while the linear terms on the left-

- n(Esl* +2|Er)Es.  (4)

hand side (LHS) describe the dispersive coupling between /+Oo hm(z)hm,(z)eﬂmaz dx
the slowly varying electric-field components, the forward —oo
field Er and the backward fieldZz. The refractive index s As sin ABAz A2AImA (13)

ng represents the refractive index of the nonlinear medium ABAz
without spatially periodic variation. The coupling Constans i, orqer to discretize the first nonlinear term on the RHS of

directly proportional to the amplitude of the cosines variatio&) and (2). For the second term on the RHS, the intensities
of the refractive index, whiley is directly proportional to the \Ex|? and |Ep|> have to be expressed in ,terms of the

. . . . . . F
nonh_near r_efracuve index _coeff|C|ent. The detuning parame_tg;(pansion coefficients. The field expansions (3) as well as the
Apf is defined as the difference between the pmpagat'Sﬁhogonality relations (5), are used to calculate
constant of a guided mode and the wavenumber of the grating

+oo +oo +o0
[6]. 2 _ T [
The forward and backward fieldl,(z, t) with z = F, B [ Ealz, )" = Z,_ R oo S

is expanded as kK ,m, m/=—
’ hk(t)hk, (t)hnl(z)hnl’ (Z) dt dZ

+oo +oo
EJ;(Z, t) - Z Elgf, mhk(t)hm(z) (5) = Z AtAZ|E;f7 m|2 (14)

k, m=—co k, m=—o0

where E , with © = F, B are the constant expansionyhere again: = F, B. The scalarAtAl|EY | |? represents
coefficients. The indices: and k are the discrete space andhe energy in one space and time discretization intervakat
time indices related to the space and time coordinates Vid¢ andz = mAz. Thus, the intensity for this discretization
z = mAz andt = kAt, whereAz and At represent the spaceinterval is given by|Ef  |*. Proceeding as described in [8],
discretization interval ir-direction and the time discretization[lo], the authors obtain the partial difference equations

interval, respectively. The functioh,,(z) is defined by
Elf—l—l,m - Elf—l,m + S(Elf:m-l—l - Elf:nz—l)

z
hon(2) = h( - m) (6) B sin ABAz
Az = 2inSAZ W

with the rectangular pulse function
guiarp + 271502 Ef .2 + 2| EE . |)EE .,

B —23ABmAz
Ek, mC

1
17 for |Z| < 2 El?—l—l,rn - EkB—l,rn - S(Elfnl-l—l - Elfrn—l)
_ 1 _ 1 .
Mz) =9 3 for |2[ = 3. (7) — 2nsAz sin ABAz EF G2IABmMAZ
0, for [z] > ABAz o

B 2 F 2 F
Then the field expansions are inserted in Maxwell’s equations + 2788 Ejc |+ 2By, ) B m (15)
and the equations are sampled using pulse functions as teere 5 is the stability factas = cAt/(noAl).
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B. Boundary Conditions for the FDTD Scheme 12 . r . . r

For the optical fiber filter, the boundary conditions at the
beginning of the nonlinear material at= 0 and at the end of 4|
the nonlinear material at = L are given by

8» <
A 2 2
Ep(0, 1) = /5 (L4 )e /@) (16)

Intensity

implying an intensity of

Ep(0, ) = Ae=t/e" (17)
and ol
Ep(L,t)=0 (18)
as well as 1500 2000 2500 Timzcic:gpﬂ 3500 4000 4500
OFg _ no % (19) Fig. 1. Transmitted pulse modeled by FDTD.
Oz |,_, ¢ Ot |, _,
and _ _
OFEr _ ™ aﬁ ' (20) Thus the absorbing material may be modeled by
oz |,_1 c Ot |._p

E* — G—QU’AtEa;
k+1,m k—1,m
While the implementation of the boundary conditions (16) ]FSG_U’N(E’T —EF ) (26)
¢, m+1 c, m—1/°

and (18) is straightforward, (19) and (20) require special care.

One way of satisfying the radiating boundary conditions is . o .
y fying 9 y ﬁSte that a correct discretization using the method of moments

choose an ABC based on the one-way wave equation similal i ) . .
the ABC's presented in [15] for two-dimensional (2-D) FpTD equires the separate discretization of (24) and (25) using the

Assuming integer values for the stability facter E,’jo is integral
determined by the backward field at= Az, E,’jl, by o' At
Loo sinh < )
—o’ —o'kA
EJ, = E,?_l/&l (21) /_Oo hi(®)hp (B)e™7 t dt = &, 1w At A ¢ £,
2

andEj; ;. by the forward field at = L— Az, EP L) A1 (27)
by

(22) Sampling (24) in space domain, the conductivity is assumed
L - .. in terms of pulse functions with respect to space. To obtain
Another way of satisfying .the radiating boundary cond|t|on&6)' one has to eliminat&? . and use the approximation
is to use the PML technique [16]. Note that for the one-.nIh z/zr~1forz — 0, which is justified since the values

. . . o1
dimensional (1-D) case, this absorber reduces to a phys'Sﬁa’At are small. For all simulations, a parabolic distribution

absorbing layer. The absorbing material with the permittivitgf the conductivity in the absorbing layer is used with the
g9 and the conductivity is described by the partial diﬁerentialthicknessNA7

equations

F _ pF
Ek, L/Az — Ek—l/s, L/Az—1"

190FE,  OE,

- +

¢ Ot 0z
whereo’ = o/(¢oc) and where agaim = F', B. As mentioned

2
+d'E, =0 (23) o (mAz) = 00(—) , form=0,1,---,N (28)

é/yhereao represents the maximum of the conductivity at the

. L o .. end of the absorbing layer. As in [16], the FDTD mesh is

tions due to sharp variations of the conductivity. SUbStItUtmirminated by a perfect electric conductor (PEC) at the end of
the absorbing layer.

Choosing a Gaussian excitation according to (16) with
. A = 8 and o = 480/At as shown in Fig. 1, the intensity
leads to the homogeneous one-way wave equatiohfQt, t) |Er(z, )2 of the transmitted pulse is calculated by the
in free space FDTD scheme as shown in Fig. 2. For the simulation, (1)
and (2) have been normalized in terms of the length of the
nonlinear material. and the transient time. The parameters
have then been chosen to be= noL/(10c) as well as

Ex(z7 t) = Ew(z’ t)e—o’t (24)

18E, OE,
- +
c Ot Oz

— 0. (25)



388 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 3, MARCH 1997

12 T T 12 T T T
10F 104
8 J 8 4
Z 2
4t 4
2t 2 J
0 1 1 h T 1 0 1 1 I BN e /\_,-
5000 6000 7000 8000 9000 10000 11000 5000 6000 7000 8000 9000 10000 11000
Time steps k Time steps k
Fig. 2. Incident Gaussian pulse. Fig. 3. Transmitted pulse modeled by FDTD with reflections from the
absorbers.
TABLE |
THE PEAK VALUES OF THE INTENSITY OF THE TRANSMITTED PULSE I1l. NONLINEAR MRTD MODELING

L/Az | FDTD | MRTD A

10/0 0407 A. The Derivation of the S-MRTD Scheme

200 7.969 | 10.623 eng:]cth?j (ijr:anvatlon of the S-MRTD scheme, the fields are

500 | 10.189 P

—+oo
1000 10.562 ;
Ei(zt)= >  E  h)¢m(2) (29)

k,m=—occ

kL = 4, BL = 12, andyL = 2/3. With this choice of \yhere EY with y = f, b are the constant expansion

the parameters, the results obtained by integrating numericaliyefficients for the scaling function expansions. The function
along the forward and backward characteristics [6] could %n(/?) is defined as

reproduced. As for the discretization, for the results shown in B

Fig. 2, a space and time discretization intervalof = 0.001 Pm(z) = ¢( A m) (30)
and At = 0.003 125 was chosen, thus the nonlinear material Az

was modeled by a mesh with 1000 grid points. With half ofhere¢(z) represents the cubic spline Battle-Lemarie scaling
the grid points, the transient pulse starts to be distorted aftnctions [11], [12] depicted in Fig. 4. Assuming a Fourier

is, therefore, not modeled correctly anymore. Table | givégnsformation defined by

the peak values of the intensity of the transmitted pulse for ~ oo

modeling the nonlinear material by a mesh with 200, 500, and PN = / ()™ dz (31)
1000 grid points. Both suggested absorbers, the ABC based on -

the one-way wave equation and the PML technique have b | e

applied in the FDTD simulation. The ABC requires much less P(z) = — / PN dA (32)
computational efforts than the PML technique, however, it is 27 J oo

unstable in the nonlinear simulation. Therefore, the preferrgeh closed-form expression of the scaling function in spectral
ABC for the nonlinear simulation is the PML technique. Fofomain is given by [17] as shown in (33) at the bottom of the
Fig. 2, a parabolic distribution of the conductivity accordingext page, with the low-pass spectral domain characteristics
to (28) with N = 1000 and oy = 0.1 has been used. Onghown in Fig. 5.

a first view, the value ofV = 1000 seems to be very Then, the field expansions are inserted in (1) and the
large, however, Fig. 3 illustrates that some reflections froﬂquations are sampled using pulse functions as test functions
the absorber superimposes with the transmitted pulse, whgftime and scaling functions as test functions in space. The
the thickness of the absorbing layer is reduced by a fact9impling with respect to time is the same as for the derivation
of two and whenlV = 500 is chosen instead. Note that forgf the FDTD scheme. For the sampling with respect to space,

an absorbing layer withV. = 500, increasingo, increases the authors use the orthogonality relation for the scaling
the reflections of the absorber due to the sharp variationsfgfctions [17]

the conductivity and decreasiig increases the reflections of oo
the absorber because the conductivity is not high enough to / G 2) by (2) Az = S, i A7 (34)
absorb the pulse completely. —o0 ’
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1.5¢ TABLE I
THE COEFFICIENTS a(1)

L6 ; a(i)
0.0
0.9410963
—-0.3946688
0.2000380
-0.1057210
0.0564244
-0.0301826
0.0161536
~-0.0086464
0.0046282
-0.0024774
0.0013261
—-0.0007098
0.0003780
-0.0002092
0.0001085

Fig. 4. Cubic spline Battle—Lemarie scaling function in space domain.
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have compact, but only exponential, decaying support and thus
the coefficientssz(¢) for ¢ > 15 are not zero. However, these
coefficients are negligible and do not affect the accuracy of the
e -0 - ° > 10 = K nonlinear MRTD modeling, thus the approximation is used

Fig. 5. Cubic spline Battle-Lemarie scaling function in spectral domain. +oo ¢ (7) +15
/ Pm(2) % dzr Y ald)omii,m. (37)

i=—15
To calculate the integral corresponding to (10) for scalmlgor the discretization of the nonlinear terms, the integrals have
functions, the closed-form expression of the scaling function nin" o evaluated
the spectral domain is used. According to Galerkin's method

[7], for complex basis functions, one has to choose the _ L
. . . . Irn m’ d)rn d)rn’ ) z (38)
complex conjugant of the basis functions as test functions.
Then, the integral is obtained and
o O(2) / P (2 ()= 02 (39)
- m’ dz rn rn’ m m’ v
RO
1 [ o ) Note that as for the expansion in terms of pulse functions, the
= / |P(A)[FA sin A(m” — m) dA (35) energy in terms of the scaling-function expansion coefficients
i 0 is given by
where¢()) is given by (33). This integral may be evaluated too
numerically resulting in |Ex(z, 1) Z AtA7|Ek e (40)
400 a¢nl ( ) +oo , k,m=—occ
- Pm(2) == 92 dz = Z a()mti,m- (36)  \yhere againt = F, B andy = f, b. Thus the intensity
=00 for a discretization interval at = kAf and 2 = mAz is

The coefficients:(i) for 0 < i < 15 are shown in Table II, the given by |E} | |>. The evaluation of the integral,, ,.» and
coefficientsa() for i < 0 are given by the symmetry relation/ + is split into three parts: the first parh, m’ = 0,

rn m/’

a(—i) = —a(i). The Battle-Lemarie scaling function does n0$|gn|f|es close to the beginning of the nonlinear material, the

(33)

l—ésin2 é —i—gsin4 é — 4 sin® é
3 2 5 2 315 2
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TABLE Il as well as
THE COEFFICIENTS B;
+ _ +25A8L
i B; IL/AZ—rn, L/Az—m/ _Ir:'ri,rn’e ! (46)
0] 1.9697616 and
1| -0.6724304 I = ) (47)
21 0.2687042 4 _
31 .0.1185199 where (Im’m,)*_represents 'Fhe conjugate complexIQ‘i m
only one matrix representind,, ,» and one representing
4| 0.0551914 1 7 . . :
17 ., have to be calculated. Proceeding as described in [4],
S | ~0.0265203 the partial difference equations are obtained
6| 0.0129981
7 | -0.0064574 El Bl +sD.(E],)
8| 0.0032398 - b
= 29ksAz I A
9 | -0.0016377 ; o

+27y582 > I e (|EL 0 )? +2|E} o DEL .

second parin, m’ &~ L/Az, signifies close to the end of the
; - Ell:—l,rn - SDZ(Elli,rn)

nonlinear material, and the third part is the nonlinear materialZk+1.m

in between. As for the modeling of anisotropic dielectric media = 2jxsAz Z Bl
[4], the integrals (38) and (39) give rise to a linear matrix o ’
equation. However, this matrix contains only significant off- 1 25vsAz Z I (|JEL 2 +2)Ef PEL
diagonal elements close to the beginning and the end of the — o Fym kym
nonlinear material. In between, the off-diagonal elements can (48)
be neglected, thus fdd <« m, m’ <« L/Az, the following
is considered: where the operator has been introduced
Irn, m’ %6771, rn’AZ (41) +15
and D.(E},)= > aE}, . (49)
Irzrtz m’ %6,”7 m’AZ@iQ]A'BmAZ- (42) =i

Form, m’ ~ 0, the integralsl,, ,,» andI= , are evaluated B. Boundary Conditions for the MRTD Scheme

m

numerically using the representation of ‘the scaling function Since the MRTD scheme is based on the expansions of
in terms of cubic spline functions [2]. The cubic splinghe fields in terms of nonlocalized basis functions, the im-
Battle—Lemarie scaling function in space domain may Rflementation of the boundary conditions (16) and (18) is not

expressed as as straightforward as for FDTD. The boundary condition (18)
+o0 requires the backward field to be zero, which is the same as
d(z) = Z B;B(z —1) (43) considering a PEC at= L for the backward field only. Since
i=—oco the two partial differential equations (1) and (2) decouple for

linear materials, is satisfied (18) by adding a slice of free space

where the cubic spline functioB(z) is defined as terminated with a PEC for the backward field only to the end

2, 2P of the nonlinear material. Then the image principle [3], [4] is
37T for |2] <1 applied to model the PEC at= M Az, which is equivalent
B(z) = L2 o)), for1<|z|<2 (44 toterminating the mesh at= MAz and making use of the
symmetry relation
0, for |z| > 2
Table Il gives the expansion coefficierfi which the authors Ez{ M+m = _EIJ:, M-m (50)

have considered for the numerical evaluation of the integrals, . o ) )

while the coefficientsB; for i > 9 were neglected. The for the expansions coefficients outside the mesh. This proce-
coefficientsB; for ¢ < 0 are given by the symmetry relationdure allows the author to use (48) without any modifications.

B, = B_,. For the MRTD simulations in this paper, the With respect to space domain, the forward and backward

integralsi,,, . andI$ . close to the beginning and the end(ielo_IS are rep;ese_nted_ in terms _Of _Scaling func_tions, thgs an
of the nonlinear material are approximated by ® matrices €XCitation of£; ,, implies the excitation of a scaling function
assuming a discretization, where the maxima of the scaliffySPace domain. In order to be able to use a pulse excitation

functions at the beginning and the end of the nonlinear mater4h respect to space and to obtain an excitation identical to an
are placed exactly at = 0 and » = L. Note that due to the FDTD excitation, the boundary condition (16) is represented
symmetry relations in terms of a pulse function by

IL/AZ—nL,L/AZ—nL’ = Irn,rn’ (45) EF(Zv t)|Boundary = EF(07 t)hO(z) (51)
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TABLE IV 12 T T T T T
THE COEFFICIENTS (i)

(i)
0.9150343
0.0382121
0.0096737

-0.0087043
0.0050851
-0.0027142
0.0014106 ar )

10r R

Intensity

Sy Ot W W N = O e

and the latter equation is discretized in terms of scaling il
functions. Using

1L i

—+oo +6 5%00 6000 7000 ) 8000 Qom 11000
/ hm(z)(j)m/ (z) dz ~ Z C(i)6n1+i, mr Az (52) Time steps k

- 1=—6

Fig. 6. Transmitted pulse modeled by MRTD.
where the coefficientg:(i) are given in Table IV and the

cobefficient5c(i) for i<0 by the symmetry relatiorq(—i) = assume that the conductivity is given in terms of scaling
c(i), the representation of the pulse functionzat 0 in terms  fnctions with respect to space. Then the partial difference
of scaling functions is obtained: equations for modeling the absorbing material may be derived
; +6 in the same way as described for FDTD yielding
Ek nl|Boundar %EF(Ov kAt) c(i)éi,rn , ,
7 Y ig—:ﬁ Ez+l,nl = 6_20 Ath—l,nl + se”? AtDZ(EiJ‘, rn)' (58)

=Er(0, KAt for <6. (53
r (0, yelm), [m} < 6. (53) Again, (28) is used as the distribution of the conductivity

The forward field given by the boundary condition fox. 1/2 in the absorbing layer, which means the amplitudes of the
is superimposed to the forward field fer> 1/2 and the pulse scaling functionss’(mAz) have a parabolic distribution in
excitation is modeled by space domain. The PEC at the end of the absorbing layer is
f _ f _ again modeled by the image principle as discussed above.
By mlowmt = Ep(0, kAt)e(m) + B, [1 = e(m)], Fig. 6 illustrates the results of the nonlinear modeling
for |m[ < 6. (54)  using the S-MRTD scheme. The intensj#, (z, ¢)|?> may be

In the simulation, the forward field is calculated only foPPtained from the expansion coefficienty ,, by sampling
m > 0. To apply the operator defined by (49), the authoife field expansions (29) with either delta functions [4] or with
assume the forward field to be even with respect te 0 o pulse functions. Since the results of the MRTD simulation will

that the expansion coefficients fer < 0 are given by be cqmpared to the FDTD results, (29) is sampled with pulse
functions and

EIJ:, —-m = El{, m’ (55)
Note that this procedure of modeling sources allows for theE’”(zo’ fo) = // Eo(z, )z = mAz)h(E = kAL) dz dt
modeling of an arbitrary space distribution of the excitation. +6
The implementation of the boundary conditions (19) and ~ Z (DB oy (59)
(20) is straightforward for MRTD applying the ABC or the i=—6

PML technique derived for the FDTD scheme. While for . .
FDTD, an ABC determines only the field component at th here the integral (52) has the coefficients) given by Table

boundary of the mesh, for MRTD terminating the mesh With. ) Flort.the '\ﬂRTDb smulangn;,‘ thetr?anmt astor th(_e FDTD.,[ i
an ABC requires the estimation of several field componen%mu ahions has been used, thus the same aussian excriation

beyond the boundary of the mesh. For the S-MRTD sche 3 shown in Fig. 1 has been chosen. Furthermore, exactly
used in this paper, fifteen field components have to be det € same parameters «L, L, and_fyL as for th_e FDTD
ulation have been used. The shift of the maximum of the

mined in order to use the operator defined by (49). From (2i ) . .
and (22), the following equations are obtained: trig;smMed pulse by about 508¢ is due to an additional

slice of free space in the MRTD mesh between the excitation
E,fm :Ef_m/syl, om <0 (56) and the beginning of the nonlinear material. This additional
and slice of free space separates the excitation and the nonlinear
material and thus allows for the use of (48) and (54) without
Elf:nl :Elf—(nl—L/Az)/s,L/Az—l7 for 710 2 L/AZ (57) any modifications. ( ) ( )
for the ABC's atz = 0 and 2 = L. To apply the PML  The ABC based on the one-way wave equation and the PML
technique for the termination of the MRTD mesh, the authotechnique have both been applied in the MRTD simulation.
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performance of the absorber it makes no difference whether
the conductivity is represented in terms of pulse or scaling
functions. In comparison with FDTD, the authors’ results

suggest that the thickness of the PML in terms of grid points
can be reduced by a factor of ten. Thus, in view of 2-D and
3-D MRTD modeling, the PML technique seems to represents
the ideal mesh termination for MRTD schemes.

In comparison to the FDTD scheme, the S-MRTD scheme
exhibits highly linear dispersion characteristics. These prop-
erties allow for a reduction of the mesh size by a factor of
five in a 1-D problem while the results are identical. This
factor of five is consistent with the results for the linear MRTD
modeling. In [4], it has been shown that the MRTD scheme has
the capability of providing accurate results for a discretization
close to two points per wavelength and close to the Nyquist
limit, respectively. In contrast to MRTD, Yee’s FDTD scheme
is known to provide accurate results only for a discretization

12 T T T T T

101

Intensity

e, S
9000 10000

8000
Time steps k

0 fl )
5000 6000 7000 11000

Fig. 7. Transmitted pulse modeled by MRTD without correct modeling d¥f more than ten points per wavelength.

the material transitions.

For the given geometry, the execution time for MRTD was

about a factor of 1.5 larger than for FDTD indicating that the
Since the ABC was found to be highly unstable in the norverage execution time for one MRTD cell is about a factor

linear simulation, all the results were obtained by terminati

an 7.5 larger than for a FDTD cell. These results suggest the

the MRTD mesh with PML’s. As for the discretization, for thd cduction of the mesh size by a factor of 25 and 125 for

results shown in Fig. 6 a space discretization interval of on
Az = 0.005 was necessary to obtain the same results as
FDTD. Thus the number of the grid points in the nonlinezﬁnd
material could be reduced from 1000 for FDTD to only 2081e

for MRTD. Note that using only half of the grid points, the3'D

transient pulse starts to be distorted and thus, is not modef

th 2-D and 3-D problems. In terms of execution time, a
&duction of 25/7.5 = 3.33 and 125/7.5 = 16.67 for both 2-D

3-D modeling may be expected. These numbers confirm
drastic reduction in computer resources observed in the
linear MRTD modeling [3], [4]. Computer savings of

order of magnitude with respect to execution time and

correctly anymore (see Table I). For the absorbing layer, it wi0 orders of magnitude with respect to the memory re-

found that the thickness could be reduced by a factor of twid

uirements make a 3-D MRTD modeling of optical structures

which means the results depicted in Fig. 6 were calculatéefSiPle-

using (28) withN = 100 andoy = 0.1. The execution time

for MRTD was about a factor of 1.5 larger than for FDTD
which means that the average execution time for one MRTD
cell is about a factor of 7.5 larger than the average executiof]
time for one FDTD cell. Fig. 7 illustrates the necessity of
modeling the beginning and the end of the nonlinear materigg)
sufficiently accurate. While in Fig. 6, the transmitted pulse
has been calculated by approximating the integfals,, and
Ifflml, close to the beginning and the end of the nonlineafs]
material by 9x 9 matrices, the results depicted in Fig. 7 have
been obtained by the use of the approximations (41) and (423
only.

(5]
IV. CONCLUSION

Both FDTD and MRTD schemes for the modeling of [€]
nonlinear pulse propagation have been derived and the conse-
quences of the use of nonlocalized instead of localized basis
functions have been demonstrated. Furthermore, the corrdt
treatment of the boundary conditions including the modelingg;
of an arbitrary source distribution as well as absorbers for
the S-MRTD scheme has been explained in detail. Whil&°
ABC'’s based on the analytic Green'’s function of the one-way
wave equation require less computational efforts, they exhibitl
instabilities in both FDTD and MRTD schemes. Implementingz]
the PML technique in MRTD is straightforward, since for the
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