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Abstract— A multiresolution time-domain (MRTD) scheme
based on the expansion in scaling functions is applied to the
modeling of nonlinear pulse propagation. Appropriate absorbers
for the MRTD scheme are presented and their performance is
discussed. The differences using pulse functions and nonlocalized
basis functions like the Battle–Lemarie scaling functions are
demonstrated by deriving time-domain schemes for both sets
of orthonormal basis functions.

Index Terms—Nonlinear, time domain, wavelets.

I. INTRODUCTION

W AVELET functions and the related concept of mul-
tiresolution analysis has become a matter of fast-

growing interest in electromagnetic society. The application
of wavelet expansions to the solution of integral equations
leads to very sparse moment matrices and to advantages
over conventional basis functions [1], [2]. Recently, it has
been shown that these advantages are also present when
applying wavelet expansions to the solution of differential
equations. In particular, the application of multiresolution
analysis directly to Maxwell’s equations has lead to new
multiresolution time-domain (MRTD) schemes with highly
linear dispersion characteristics [3], [4]. The unparalleled
inherent properties of the MRTD schemes provide advantages
over the finite-difference time-domain (FDTD) scheme of [5]
with respect to memory requirements and execution time. The
purpose of this paper is to demonstrate that these advantages
also do exist in the case of modeling nonlinear materials. While
the physics of the nonlinear pulse propagation is described
in detail in [6], this paper concentrates on the computational
aspects of solving the nonlinear partial differential equations.

The method of moments [7] has proven to be a powerful
approach not only for the numerical analysis of integral
equations, but also for the discretization of partial differential
equations. In particular, the application of the method of
moments for the discretization of Maxwell’s equations has
lead to the field theoretical foundation of the transmission line
method (TLM) method [8], [9]. In addition, it has been shown
in [8], [10] that Yee’s FDTD scheme can be derived using the
same approach with pulse functions for the expansion of the
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unknown fields. In general, the method of moments allows for
the use of any complete set of orthonormal basis functions.
In [3], [4], cubic spline Battle–Lemarie scaling and wavelet
functions [11], [12] have been used as expansion functions in
space domain. Since the use of scaling and wavelet functions
as a complete set of basis functions is called multiresolution
analysis [13], [14], the resulting time-domain schemes have
been called MRTD schemes. Throughout this paper, the elec-
tromagnetic fields are represented by an expansion in terms of
scaling functions only, thus the resulting scheme is denoted
by a S-MRTD scheme. In order to obtain a two-step S-MRTD
scheme with respect to time, pulse functions are used as
expansion and test functions in time domain.

While the use of localized basis functions like pulse func-
tions allows for a localized modeling of material properties,
the application of nonlocalized basis functions like the Bat-
tle–Lemarie scaling functions requires a nonlocalized model-
ing of material discontinuities. To illustrate the differences in
the two approaches, it is at first demonstrated how to dis-
cretize the nonlinear partial differential equations using pulse
functions. This approach leads to a FDTD scheme modeling
the pulse compression in a nonlinear distributed optical fiber
filter. In the second part of the paper, the nonlinear partial
differential equations are discretized using Battle–Lemarie
scaling functions instead of pulse functions. Two absorbers,
absorbing boundary conditions (ABC’s) based on the one-
way wave equation [15] and the perfectly-matched layer
(PML) technique [16] are presented and their performance is
discussed for both FDTD and MRTD.

II. NONLINEAR FDTD MODELING

A. The Derivation of the FDTD Scheme

The physical system modeled in this paper is a spatially
periodic dielectric medium whose refractive index depends
on the intensity of an incident electromagnetic pulse. The
refractive index can be written as

(1)

Here is the background refractive index, is the amplitude
of the periodic index perturbation , is the
nonlinear index coefficient, and is the electric field. Within
the medium, the total field is taken as a sum of forward and
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backward propagating waves

(2)

where is the wavenumber of the field envelopes and
, which are slowly varying functions of space and time.

The periodic spatial modulation of the refractive index leads
to coupling between forward and backward waves, the strength
of which coupling is described by the constant ,
where . By using (1) and (2) in Maxwell’s
equations and making use of the slowly varying envelope
approximation following equations for and may be
obtained:

(3)

(4)

The terms on the right-hand side (RHS) cubic in fields describe
self-phase modulation, while the linear terms on the left-
hand side (LHS) describe the dispersive coupling between
the slowly varying electric-field components, the forward
field and the backward field . The refractive index

represents the refractive index of the nonlinear medium
without spatially periodic variation. The coupling constantis
directly proportional to the amplitude of the cosines variation
of the refractive index, while is directly proportional to the
nonlinear refractive index coefficient. The detuning parameter

is defined as the difference between the propagation
constant of a guided mode and the wavenumber of the grating
[6].

The forward and backward field ( , ) with ,
is expanded as

(5)

where with , are the constant expansion
coefficients. The indices and are the discrete space and
time indices related to the space and time coordinates via

and , where and represent the space
discretization interval in -direction and the time discretization
interval, respectively. The function is defined by

(6)

with the rectangular pulse function

for

for

for

(7)

Then the field expansions are inserted in Maxwell’s equations
and the equations are sampled using pulse functions as test

functions. For the sampling of the linear terms with respect to
space and time, the orthogonality relation is needed

(8)

where represents the Kronecker symbol

for
for

(9)

Using

(10)

and

(11)

yields

(12)

The later integral is needed for the sampling of the derivatives
with pulse functions in both space and time domains.

The nonlinear terms are discretized in a consistent manner,
which indicates the need to calculate the integrals

(13)

in order to discretize the first nonlinear term on the RHS of
(1) and (2). For the second term on the RHS, the intensities

and have to be expressed in terms of the
expansion coefficients. The field expansions (3) as well as the
orthogonality relations (5), are used to calculate

(14)

where again , . The scalar represents
the energy in one space and time discretization interval at

and . Thus, the intensity for this discretization
interval is given by . Proceeding as described in [8],
[10], the authors obtain the partial difference equations

(15)

where 5 is the stability factor .
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B. Boundary Conditions for the FDTD Scheme

For the optical fiber filter, the boundary conditions at the
beginning of the nonlinear material at and at the end of
the nonlinear material at are given by

(16)

implying an intensity of

(17)

and

(18)

as well as

(19)

and

(20)

While the implementation of the boundary conditions (16)
and (18) is straightforward, (19) and (20) require special care.
One way of satisfying the radiating boundary conditions is to
choose an ABC based on the one-way wave equation similar to
the ABC’s presented in [15] for two-dimensional (2-D) FDTD.
Assuming integer values for the stability factor, is
determined by the backward field at , , by

(21)

and by the forward field at , ,
by

(22)

Another way of satisfying the radiating boundary conditions
is to use the PML technique [16]. Note that for the one-
dimensional (1-D) case, this absorber reduces to a physical
absorbing layer. The absorbing material with the permittivity

and the conductivity is described by the partial differential
equations

(23)

where and where again , . As mentioned
in [16], a direct discretization of (23) leads to numerical reflec-
tions due to sharp variations of the conductivity. Substituting

(24)

leads to the homogeneous one-way wave equation for
in free space

(25)

Fig. 1. Transmitted pulse modeled by FDTD.

Thus the absorbing material may be modeled by

(26)

Note that a correct discretization using the method of moments
requires the separate discretization of (24) and (25) using the
integral

(27)

Sampling (24) in space domain, the conductivity is assumed
in terms of pulse functions with respect to space. To obtain
(26), one has to eliminate and use the approximation

for , which is justified since the values
of are small. For all simulations, a parabolic distribution
of the conductivity in the absorbing layer is used with the
thickness

for (28)

where represents the maximum of the conductivity at the
end of the absorbing layer. As in [16], the FDTD mesh is
terminated by a perfect electric conductor (PEC) at the end of
the absorbing layer.

Choosing a Gaussian excitation according to (16) with
and as shown in Fig. 1, the intensity

of the transmitted pulse is calculated by the
FDTD scheme as shown in Fig. 2. For the simulation, (1)
and (2) have been normalized in terms of the length of the
nonlinear material and the transient time. The parameters
have then been chosen to be as well as
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Fig. 2. Incident Gaussian pulse.

TABLE I
THE PEAK VALUES OF THE INTENSITY OF THE TRANSMITTED PULSE

, , and . With this choice of
the parameters, the results obtained by integrating numerically
along the forward and backward characteristics [6] could be
reproduced. As for the discretization, for the results shown in
Fig. 2, a space and time discretization interval of
and was chosen, thus the nonlinear material
was modeled by a mesh with 1000 grid points. With half of
the grid points, the transient pulse starts to be distorted and
is, therefore, not modeled correctly anymore. Table I gives
the peak values of the intensity of the transmitted pulse for
modeling the nonlinear material by a mesh with 200, 500, and
1000 grid points. Both suggested absorbers, the ABC based on
the one-way wave equation and the PML technique have been
applied in the FDTD simulation. The ABC requires much less
computational efforts than the PML technique, however, it is
unstable in the nonlinear simulation. Therefore, the preferred
ABC for the nonlinear simulation is the PML technique. For
Fig. 2, a parabolic distribution of the conductivity according
to (28) with and has been used. On
a first view, the value of seems to be very
large, however, Fig. 3 illustrates that some reflections from
the absorber superimposes with the transmitted pulse, when
the thickness of the absorbing layer is reduced by a factor
of two and when is chosen instead. Note that for
an absorbing layer with , increasing increases
the reflections of the absorber due to the sharp variations of
the conductivity and decreasing increases the reflections of
the absorber because the conductivity is not high enough to
absorb the pulse completely.

Fig. 3. Transmitted pulse modeled by FDTD with reflections from the
absorbers.

III. N ONLINEAR MRTD MODELING

A. The Derivation of the S-MRTD Scheme

For the derivation of the S-MRTD scheme, the fields are
expanded in

(29)

where with , are the constant expansion
coefficients for the scaling function expansions. The function

is defined as

(30)

where represents the cubic spline Battle–Lemarie scaling
functions [11], [12] depicted in Fig. 4. Assuming a Fourier
transformation defined by

(31)

and

(32)

the closed-form expression of the scaling function in spectral
domain is given by [17] as shown in (33) at the bottom of the
next page, with the low-pass spectral domain characteristics
shown in Fig. 5.

Then, the field expansions are inserted in (1) and the
equations are sampled using pulse functions as test functions
in time and scaling functions as test functions in space. The
sampling with respect to time is the same as for the derivation
of the FDTD scheme. For the sampling with respect to space,
the authors use the orthogonality relation for the scaling
functions [17]

(34)
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Fig. 4. Cubic spline Battle–Lemarie scaling function in space domain.

Fig. 5. Cubic spline Battle–Lemarie scaling function in spectral domain.

To calculate the integral corresponding to (10) for scaling
functions, the closed-form expression of the scaling function in
the spectral domain is used. According to Galerkin’s method
[7], for complex basis functions, one has to choose the
complex conjugant of the basis functions as test functions.
Then, the integral is obtained

(35)

where is given by (33). This integral may be evaluated
numerically resulting in

(36)

The coefficients for are shown in Table II, the
coefficients for are given by the symmetry relation

. The Battle–Lemarie scaling function does not

TABLE II
THE COEFFICIENTS a(i)

have compact, but only exponential, decaying support and thus
the coefficients for are not zero. However, these
coefficients are negligible and do not affect the accuracy of the
nonlinear MRTD modeling, thus the approximation is used

(37)

For the discretization of the nonlinear terms, the integrals have
to be evaluated

(38)

and

(39)

Note that as for the expansion in terms of pulse functions, the
energy in terms of the scaling-function expansion coefficients
is given by

(40)

where again , and , . Thus the intensity
for a discretization interval at and is
given by . The evaluation of the integrals and

is split into three parts: the first part ,
signifies close to the beginning of the nonlinear material, the

(33)
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TABLE III
THE COEFFICIENTSBi

second part , signifies close to the end of the
nonlinear material, and the third part is the nonlinear material
in between. As for the modeling of anisotropic dielectric media
[4], the integrals (38) and (39) give rise to a linear matrix
equation. However, this matrix contains only significant off-
diagonal elements close to the beginning and the end of the
nonlinear material. In between, the off-diagonal elements can
be neglected, thus for , the following
is considered:

(41)

and

(42)

For , the integrals and are evaluated
numerically using the representation of the scaling function
in terms of cubic spline functions [2]. The cubic spline
Battle–Lemarie scaling function in space domain may be
expressed as

(43)

where the cubic spline function is defined as

for

for

for

(44)

Table III gives the expansion coefficients which the authors
have considered for the numerical evaluation of the integrals,
while the coefficients for were neglected. The
coefficients for are given by the symmetry relation

. For the MRTD simulations in this paper, the
integrals and close to the beginning and the end
of the nonlinear material are approximated by 99 matrices
assuming a discretization, where the maxima of the scaling
functions at the beginning and the end of the nonlinear material
are placed exactly at and . Note that due to the
symmetry relations

(45)

as well as

(46)

and

(47)

where represents the conjugate complex of ,
only one matrix representing and one representing

have to be calculated. Proceeding as described in [4],
the partial difference equations are obtained

(48)

where the operator has been introduced

(49)

B. Boundary Conditions for the MRTD Scheme

Since the MRTD scheme is based on the expansions of
the fields in terms of nonlocalized basis functions, the im-
plementation of the boundary conditions (16) and (18) is not
as straightforward as for FDTD. The boundary condition (18)
requires the backward field to be zero, which is the same as
considering a PEC at for the backward field only. Since
the two partial differential equations (1) and (2) decouple for
linear materials, is satisfied (18) by adding a slice of free space
terminated with a PEC for the backward field only to the end
of the nonlinear material. Then the image principle [3], [4] is
applied to model the PEC at , which is equivalent
to terminating the mesh at and making use of the
symmetry relation

(50)

for the expansions coefficients outside the mesh. This proce-
dure allows the author to use (48) without any modifications.

With respect to space domain, the forward and backward
fields are represented in terms of scaling functions, thus an
excitation of implies the excitation of a scaling function
in space domain. In order to be able to use a pulse excitation
with respect to space and to obtain an excitation identical to an
FDTD excitation, the boundary condition (16) is represented
in terms of a pulse function by

(51)
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TABLE IV
THE COEFFICIENTS c(i)

and the latter equation is discretized in terms of scaling
functions. Using

(52)

where the coefficients are given in Table IV and the
coefficients for by the symmetry relation

, the representation of the pulse function at in terms
of scaling functions is obtained:

for (53)

The forward field given by the boundary condition for
is superimposed to the forward field for and the pulse
excitation is modeled by

for (54)

In the simulation, the forward field is calculated only for
. To apply the operator defined by (49), the authors

assume the forward field to be even with respect to so
that the expansion coefficients for are given by

(55)

Note that this procedure of modeling sources allows for the
modeling of an arbitrary space distribution of the excitation.

The implementation of the boundary conditions (19) and
(20) is straightforward for MRTD applying the ABC or the
PML technique derived for the FDTD scheme. While for
FDTD, an ABC determines only the field component at the
boundary of the mesh, for MRTD terminating the mesh with
an ABC requires the estimation of several field components
beyond the boundary of the mesh. For the S-MRTD scheme
used in this paper, fifteen field components have to be deter-
mined in order to use the operator defined by (49). From (21)
and (22), the following equations are obtained:

for (56)

and

for (57)

for the ABC’s at and . To apply the PML
technique for the termination of the MRTD mesh, the authors

Fig. 6. Transmitted pulse modeled by MRTD.

assume that the conductivity is given in terms of scaling
functions with respect to space. Then the partial difference
equations for modeling the absorbing material may be derived
in the same way as described for FDTD yielding

(58)

Again, (28) is used as the distribution of the conductivity
in the absorbing layer, which means the amplitudes of the
scaling functions have a parabolic distribution in
space domain. The PEC at the end of the absorbing layer is
again modeled by the image principle as discussed above.

Fig. 6 illustrates the results of the nonlinear modeling
using the S-MRTD scheme. The intensity may be
obtained from the expansion coefficients by sampling
the field expansions (29) with either delta functions [4] or with
pulse functions. Since the results of the MRTD simulation will
be compared to the FDTD results, (29) is sampled with pulse
functions and

(59)

where the integral (52) has the coefficients given by Table
IV. For the MRTD simulations, the same as for the FDTD
simulations has been used, thus the same Gaussian excitation
as shown in Fig. 1 has been chosen. Furthermore, exactly
the same parameters, , , and as for the FDTD
simulation have been used. The shift of the maximum of the
transmitted pulse by about 500 is due to an additional
slice of free space in the MRTD mesh between the excitation
and the beginning of the nonlinear material. This additional
slice of free space separates the excitation and the nonlinear
material and thus allows for the use of (48) and (54) without
any modifications.

The ABC based on the one-way wave equation and the PML
technique have both been applied in the MRTD simulation.
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Fig. 7. Transmitted pulse modeled by MRTD without correct modeling of
the material transitions.

Since the ABC was found to be highly unstable in the non-
linear simulation, all the results were obtained by terminating
the MRTD mesh with PML’s. As for the discretization, for the
results shown in Fig. 6 a space discretization interval of only

was necessary to obtain the same results as for
FDTD. Thus the number of the grid points in the nonlinear
material could be reduced from 1000 for FDTD to only 200
for MRTD. Note that using only half of the grid points, the
transient pulse starts to be distorted and thus, is not modeled
correctly anymore (see Table I). For the absorbing layer, it was
found that the thickness could be reduced by a factor of two,
which means the results depicted in Fig. 6 were calculated
using (28) with and . The execution time
for MRTD was about a factor of 1.5 larger than for FDTD
which means that the average execution time for one MRTD
cell is about a factor of 7.5 larger than the average execution
time for one FDTD cell. Fig. 7 illustrates the necessity of
modeling the beginning and the end of the nonlinear material
sufficiently accurate. While in Fig. 6, the transmitted pulse
has been calculated by approximating the integrals and

close to the beginning and the end of the nonlinear
material by 9 9 matrices, the results depicted in Fig. 7 have
been obtained by the use of the approximations (41) and (42)
only.

IV. CONCLUSION

Both FDTD and MRTD schemes for the modeling of
nonlinear pulse propagation have been derived and the conse-
quences of the use of nonlocalized instead of localized basis
functions have been demonstrated. Furthermore, the correct
treatment of the boundary conditions including the modeling
of an arbitrary source distribution as well as absorbers for
the S-MRTD scheme has been explained in detail. While
ABC’s based on the analytic Green’s function of the one-way
wave equation require less computational efforts, they exhibit
instabilities in both FDTD and MRTD schemes. Implementing
the PML technique in MRTD is straightforward, since for the

performance of the absorber it makes no difference whether
the conductivity is represented in terms of pulse or scaling
functions. In comparison with FDTD, the authors’ results
suggest that the thickness of the PML in terms of grid points
can be reduced by a factor of ten. Thus, in view of 2-D and
3-D MRTD modeling, the PML technique seems to represents
the ideal mesh termination for MRTD schemes.

In comparison to the FDTD scheme, the S-MRTD scheme
exhibits highly linear dispersion characteristics. These prop-
erties allow for a reduction of the mesh size by a factor of
five in a 1-D problem while the results are identical. This
factor of five is consistent with the results for the linear MRTD
modeling. In [4], it has been shown that the MRTD scheme has
the capability of providing accurate results for a discretization
close to two points per wavelength and close to the Nyquist
limit, respectively. In contrast to MRTD, Yee’s FDTD scheme
is known to provide accurate results only for a discretization
of more than ten points per wavelength.

For the given geometry, the execution time for MRTD was
about a factor of 1.5 larger than for FDTD indicating that the
average execution time for one MRTD cell is about a factor
of 7.5 larger than for a FDTD cell. These results suggest the
reduction of the mesh size by a factor of 25 and 125 for
both 2-D and 3-D problems. In terms of execution time, a
reduction of 25/7.5 = 3.33 and 125/7.5 = 16.67 for both 2-D
and 3-D modeling may be expected. These numbers confirm
the drastic reduction in computer resources observed in the
3-D linear MRTD modeling [3], [4]. Computer savings of
one order of magnitude with respect to execution time and
two orders of magnitude with respect to the memory re-
quirements make a 3-D MRTD modeling of optical structures
feasible.
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